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Abstract

In this paper, strong discontinuities are embedded in finite elements to describe fracture in quasi-brittle materials. A

new numerical formulation is introduced in which the displacement jumps do not need to be homogeneous within each

finite element. Both the crack path and the displacement jumps are continuous across element boundaries. This for-

mulation is compared with the discrete approach, in which interface elements are inserted to model the discontinuities,

as well as with other embedded discontinuity approaches and with the partition of unity method. Numerical results

have been obtained with relatively coarse meshes, which compare well with experimental results and with the results

obtained from analyzes with interface elements.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent works, significant effort has been undertaken to model cracks as displacement discontinuities

within a continuum. The embedded discontinuity formulations are examples of these contributions. De-

parting from the weak formulation, where discontinuities are modeled as finite width bands and the dis-

placement field remains continuous, strong embedded discontinuities were introduced, in which the

kinematics of a discontinuous displacement field is approximated. Many examples of the strong discon-

tinuity approach can be found in literature, Dvorkin et al. (1990), Klisinski et al. (1991), Simo et al. (1993),

Lotfi and Shing (1995), Armero and Garikipati (1996), Larsson and Runesson (1996), Oliver (1996a,b),
Ohlsson and Olofsson (1997), Jir�aasek and Zimmermann (2001a,b), Wells and Sluys (2000), Borja (2000),

Wells and Sluys (2001b), Alfaiate et al. (2001a), which are compared and discussed in Jir�aasek (2000).

However, in these works, constant displacement jumps are adopted within each parent finite element. As a

result, the jumps are not continuous across the element boundaries. In other approaches, like the extended
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finite element method (XFEM) and the partition of unity method (Melenk and Babu�sska, 1996; Duarte and

Oden, 1996; Babu�sska and Melenk, 1997; M€ooes et al., 1999; Wells and Sluys, 2001a) the possibility of in-

terpolating a field over a body using partitions of unity is explored. In the works presented in M€ooes et al.
(1999), Wells and Sluys (2001a) the jumps are modeled by additional global degrees of freedom located at
the standard element nodes. As a consequence, continuous jumps across element boundaries can be ob-

tained, but the concept of embedded discontinuities is no longer addressed.

In this paper, strong discontinuities are embedded in finite elements to describe fracture in quasi-brittle

materials. First, a review of the variational formulation is presented as a common basis for both the current

approach and the partition of unity method. Next, a new numerical formulation is introduced in which

the displacement jumps at the discontinuities do not need to be constant functions within each element. The

displacement jumps are approximated by additional degrees of freedom which are evaluated directly at the

discontinuity surface. Continuity of the crack path is enforced and the displacement jumps are continuous
across element boundaries. This formulation is compared with other approaches, namely the discrete one,

in which interface elements are inserted to model the discontinuities (designated by discrete-interface ap-

proach in the remainder of the paper), other embedded discontinuity approaches and the partition of unity

method. Numerical examples are presented, and the corresponding results are compared with experimental

results and with the results obtained with other discontinuity models.
2. Kinematics of a discontinuity

In this section, the kinematics of the displacement and strain fields of a continuum crossed by a dis-

continuity are reviewed. The tensor notation is adopted. A strong discontinuity is characterized by a jump

on the displacement field, localized at a surface. Consider a domain X, with boundary oX where a dis-

continuity surface Cd is supposed to exist (Fig. 1). External tractions are applied at part Ct of the boundary

whereas displacements are imposed on part Cu of oX, such that Ct [ Cu ¼ oX and Ct \ Cu ¼ ;. The total

displacement field is the sum of a continuous part on X, ûu, with a discontinuous part corresponding to the

displacement jump sut, localized at the discontinuity surface Cd:
uðxÞ ¼ ûuðxÞ þHCd
suðxÞt; ð1Þ
where HCd
is defined as
HCd
¼ HCd

� ð1� rÞ; 06 r6 1; ð2Þ
Fig. 1. Domain X crossed by a discontinuity surface Cd.
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and HCd
is the Heaviside function at the discontinuity Cd,
HCd
¼ 1 if x 2 Xþ;

0 otherwise:

�
ð3Þ
Similar to the works presented in Klisinski et al. (1991), Ohlsson and Olofsson (1997), Lotfi and Shing

(1995), the scalar parameter r defines how the jump is transmitted to the the domain X: if r ¼ 1 the jump is

fully transmitted from X� to Xþ.

The strain field obtained from the continuous part of the displacement field is:
êe ¼ $sûu in X n Cd; ð4Þ

where ð�Þs refers to the symmetric part of ð�Þ. The total strain in the body is given by:
e ¼ $su ¼ $sûuþHCd
ð$ssutÞ in X n Cd; ð5Þ

e ¼ $su ¼ $sûuþHCd
ð$ssutÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bounded

þ dCd
ðsut� nÞs|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
unbounded

in X; ð6Þ
where � denotes a dyadic product and dCd
is the Dirac delta-function along surface Cd. Both the dis-

placement field and the strain field are continuous in X� and Xþ, since the unbounded term in Eq. (6)

vanishes in X n Cd ¼ X� [ Xþ.
3. Variational formulation

In this section, the variational formulation is reviewed as a common basis for various discrete ap-

proaches, namely strong embedded discontinuities (Dvorkin et al., 1990; Klisinski et al., 1991; Simo et al.,

1993; Lotfi and Shing, 1995; Armero and Garikipati, 1996; Larsson and Runesson, 1996; Oliver, 1996a,b;

Ohlsson and Olofsson, 1997; Jir�aasek and Zimmermann, 2001a,b; Wells and Sluys, 2000; Borja, 2000; Wells

and Sluys, 2001b; Alfaiate et al., 2001a) and the partition of unity method (Melenk and Babu�sska, 1996;
Duarte and Oden, 1996; Babu�sska and Melenk, 1997; M€ooes et al., 1999; Wells and Sluys, 2001a). Consider X
the domain occupied by the body represented in Fig. 1, as described in Section 2. In the following, similar to

the works presented in Simo et al. (1993), Lotfi and Shing (1995) and Wells (2001), the extension of the

three-field Hu-Washizu variational statements (Washizu, 1982) to a body containing an internal discon-

tinuity surface is first considered. Next, the principle of virtual work extended for a cracked body will be

obtained as a particular case. In the following, (Æ) and (:) refer to single and double contractions, respec-

tively.

The governing field equations are imposed separately in X n Cd and on Cd. Together with the boundary

conditions, they can be expressed as (see Fig. 1):
$ � rþ b ¼ 0 in X n Cd; ð7Þ

e ¼ $su in X n Cd; ð8Þ

r ¼ rðeÞ in X n Cd; ð9Þ

u ¼ �uu at Cu; ð10Þ

r � n ¼ �tt at Ct; ð11Þ

rþ � nþ ¼ tþ at Cd; ð12Þ
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r� � n� ¼ t� at Cd; ð13Þ

tþ ¼ �t� ¼ t at Cd; ð14Þ
where b are the body forces and �uu and �tt are the prescribed displacements and tractions at the boundary,

respectively. Eq. (8) is the strain displacement relation and Eq. (9) is the constitutive law. Eqs. (12) and (13)

enforce traction continuity across the discontinuity surface Cd, where the tractions are denoted by t. As

depicted in Fig. 1, nþ ¼ �n�, is the outward normal of Xþ and tþ ¼ �t� denotes the traction vector acting
on Xþ.

Eqs. (7)–(13) can be defined separately in sub-domains Xþ and X�. Assuming that the essential boundary

conditions are satisfied (u ¼ �uu at Cu), the following weak form is obtained:
Z
X�

du � ð$ � rþ bÞdXþ
Z
Xþ

du � ð$ � rþ bÞdXþ
Z
X�

dr : ðe� $suÞdXþ
Z
Xþ

dr : ðe� $suÞdX

þ
Z
C�
t

du � ð�tt� r � nÞdCþ
Z
Cþ
t

du � ð�tt� r � nÞdCþ
Z
X�

de : ðr� rðeÞÞdXþ
Z
Xþ

de : ðr� rðeÞÞdX

þ
Z
Cd

duþ � ðtþ � rþ � nþÞdCþ
Z
Cd

du� � ðt� � r� � n�ÞdC ¼ 0; ð15Þ
where du, de and dr denote compatible variations of the total displacements, strains and stresses, respec-

tively.

At this stage, it is possible to consider u, e, r, sut as independent unknown fields. This possibility was

explored in Lotfi and Shing (1995), where mixed finite elements were proposed to approximate the inde-

pendent unknown fields. In the adopted approach, Eq. (8) is automatically satisfied due to (5). Using the

divergence theorem in sub-domains X� and Xþ, one obtains:
Z
X�

du � ð$ � rÞdX ¼ �
Z
X�
ð$s duÞ : rdXþ

Z
C�
t

du � ðr � nÞdCþ
Z
Cd

du� � ðr� � n�ÞdC; ð16Þ

Z
Xþ

du � ð$ � rÞdX ¼ �
Z
Xþ
ð$s duÞ : rdXþ

Z
Cþ
t

du � ðr � nÞdCþ
Z
Cd

duþ � ðrþ � nþÞdC; ð17Þ
where Cþ
t ¼ Ct \ oXþ and C�

t ¼ Ct \ oX�. The weak form (15) can now be written as
�
Z
XnCd

ð$s duÞ : rdXþ
Z
XnCd

du � bdXþ
Z
Ct

du ��ttdC

þ
Z
XnCd

de : ðr� rðeÞÞdXþ
Z
Cd

ðduþ � du�Þ � tþ dC ¼ 0: ð18Þ
Recalling Eqs. (1) and (6) and taking the variations of the total displacements equal to
du ¼ dûuþHCd
dsut; ð19Þ
the variations of the strain equal to
de ¼ $s dûuþHCd
$s dsut in X n Cd; ð20Þ
and the variations of the jumps given by
dsut ¼ duþ � du� at Cd; ð21Þ
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one obtains:
�
Z
XnCd

ð$s dûuÞ : rdX�
Z
XnCd

HCd
ð$s dsutÞ : rdX

þ
Z
XnCd

dûu � bdXþ
Z
XnCd

HCd
dsut � bdX

þ
Z
Ct

dûu ��ttdCþ
Z
Ct

HCd
dsut ��ttdC

þ
Z
XnCd

ð$s dûuÞ : ðr� rðeÞÞdXþ
Z
XnCd

HCd
ð$s dsutÞ : ðr� rðeÞÞdX

þ
Z
Cd

dsut � tþ dC ¼ 0; ð22Þ
which reduces to
�
Z
XnCd

ð$s dûuÞ : rðeÞdX�
Z
XnCd

HCd
ð$s dsutÞ : rðeÞdX

þ
Z
XnCd

dûu � bdXþ
Z
XnCd

HCd
dsut � bdX

þ
Z
Ct

dûu ��ttdCþ
Z
Ct

HCd
dsut ��ttdC

þ
Z
Cd

dsut � tþ dC ¼ 0: ð23Þ
Taking first dsut ¼ 0 and then dûu ¼ 0, and since the stress field in the continuum depends upon the regular

strain êe,
r ¼ rðêeÞ; ð24Þ

the following two variational statements can be obtained:
�
Z
XnCd

ð$s dûuÞ : rðêeÞdXþ
Z
XnCd

dûu � bdXþ
Z
Ct

dûu ��ttdC ¼ 0; ð25Þ

�
Z
X
HCd

ð$s dsutÞ : rðêeÞdXþ
Z
X
HCd

dsut � bdXþ
Z
Ct

HCd
dsut ��ttdCþ

Z
Cd

dsut � tþ dC ¼ 0: ð26Þ
In (26), the tractions are obtained from a separate traction-jump law at the discontinuity, such that

t ¼ tðsutÞ.
Eq. (25) is the usual principle of virtual work obtained for a continuum. It is interesting to note that,

taking r ¼ 1 in (2), this formulation is the same as the one adopted in the partition of unity method (Wells

and Sluys, 2001a; Wells, 2001; Simone et al., 2000), in which case the second variational statement (26) can
be interpreted as the principle of virtual work applied to subdomain Xþ. More generally, if r is taken

between 0 and 1, separate contributions in Xþ and X� are taken into account, similar to the work presented

in Lotfi and Shing (1995), Ohlsson and Olofsson (1997). Furthermore, summing Eqs. (25) and (26), the

principle of virtual work applied to a body crossed by a discontinuity is recovered as presented in Malvern

(1969), i.e.,
�
Z
XnCd

ð$s duÞ : rðêeÞdXþ
Z
Cd

dsut � tþ dCþ
Z
XnCd

du � bdXþ
Z
Ct

du ��ttdC ¼ 0; ð27Þ
which is the weak form usually adopted in the discrete-interface approach.
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It is also interesting to compare the adopted variational formulation with the one introduced in Simo

et al. (1993) and used in many other works, namely in Armero and Garikipati (1996), Oliver (1996b), Wells

and Sluys (2001b), Jir�aasek and Zimmermann (2001a), Alfaiate et al. (2001a). In the latter case, two vari-

ational statements are also introduced: the first is the principle of virtual work (25) and the second, which is
introduced at element level, is:
1

ld

Z
Ce
d

tdC� 1

Xe

Z
Xe
r � ndX ¼ 0; ð28Þ
where ld is the length of the discontinuity Ce
d embedded in the parent element Xe. In Eq. (28), the traction

continuity condition is imposed in average. It can be shown that, in the present formulation, the traction

continuity condition is also enforced in a weak form through Eq. (26), although in a different way. De-
parting from the corresponding strong form:
t� r � n ¼ 0; ð29Þ

pre-multiplying both sides of (29) by the variations of the jumps and integrating along Cd one obtains
Z

Cd

dsut � tdC�
Z
Cd

dsut � ðr � nÞdC ¼ 0: ð30Þ
Take, for example, r ¼ 1, such that duþ ¼ dsut, and dûu ¼ 0. Applying the divergence theorem to subdo-
main Xþ as done in Eq. (17), one obtains
Z

Xþ
ð$s dsutÞ : rdX ¼

Z
Cþ
t

ðdsutÞ ��ttdCþ
Z
Cd

ðdsutÞ � ðrþ � nþÞdC�
Z
Xþ
ðdsutÞ � ð$ � rÞdX; ð31Þ
or, equivalently
�
Z
Cd

ðdsutÞ � ðrþ � nþÞdC ¼ �
Z
Xþ
ð$s dsutÞ : rdXþ

Z
Cþ
t

ðdsutÞ ��ttdCþ
Z
Xþ
ðdsutÞ � bdX: ð32Þ
From Eqs. (30), (32) and (14) we get Eq. (26). In Section 4, we shall see that a symmetric formulation can be

obtained from (25) and (26) (as in the partition of unity method), instead of the non-symmetric formulation

introduced by Simo et al. (1993).
4. Finite element approximation

Consider a finite element discretisation of the 2D domain X. Assume that one element is crossed by a
straight discontinuity which divides X in two sub-domains Xþ and X� (Fig. 2).

Recall Eq. (1). The jump sut occurs along surface Cd within the element,
sut ¼ suðsðxÞÞt; ð33Þ

where sðxÞ is the coordinate along Cd as depicted in Fig. 2(left). In this figure, a local frame s, n related to

the discontinuity is defined, where n is the normal to the discontinuity. Assume the jump is a linear function
of s given by:
suðsÞt ¼ ðDþ qsÞes þ ðC þ ksÞen; ð34Þ

where D, q, C and k are constants and es and en are unit vectors along directions s and n, respectively. For
all x 2 Xþ, rsuðsÞt will be added to the displacement field ûu, whereas for all x 2 X�, ð1� rÞsuðsÞt will be
subtracted from the displacement field ûu. In Fig. 2(right) the total displacement field is depicted (where ûu

and the tangential jump component are neglected for clarity). If the jump is assumed to be constant across
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Cd, it is sufficient to adopt one internal node to represent the displacement jump; in the work presented in

Alfaiate et al. (2001a), where crack path continuity was enforced, this node was introduced at the midpoint

of Cd. However, if higher order functions are considered for sut, more nodes are required: two nodes for a

linear function, three nodes for a quadratic function and so forth. In the example above, the additional two

nodes are located at the intersection of Cd with the edges of the element (if a quadratic function were

adopted, a third node would be located at the midpoint of Cd).

In matrix form, for each finite element e with n nodes, the following approximation of the displacement

field (1) is adopted:
ûue ¼ NeðxÞâae in Xe n Ce
d;

sut
e ¼ Ne

w½sðxÞ�we at Ce
d;

ð35Þ
where Ne contains the usual element shape functions we
i , 16 i6 n, âae are the nodal degrees of freedom

associated with ûu, Ne
w are the shape functions used to approximate the jumps sut and we are the degrees of

freedom associated with sut. In (35), if the number of nodes used to approximate the jumps is nw, Nw is a
ð2� 2nwÞ matrix: if nw ¼ 1, Nw is the identity matrix; if nw ¼ 2, Nw contains linear shape functions and so

forth.

Assume that the total displacement field, u ¼ ûuþHCd
sut, is approximated by the usual shape functions:
ue ¼ NeðxÞae in Xe n Ce
d; ð36Þ
where ae are the nodal degrees of freedom associated with total displacements u. Since the approximated

displacement field is continuous, the contribution of the jump across discontinuity Cd into ue must also be

continuous. This can be achieved by projecting the jump to the n element nodes such that:
HCd
sut

e � NeH~aae; ð37Þ

where H is a ð2n� 2nÞ matrix, H ¼ HCd

I, and I is the ð2n� 2nÞ unit matrix. Thus, in H elements related to

Xeþ are equal to ð06 r6 1Þ and elements related to Xe� are equal to ðr � 1Þ, i.e.,
Hkl ¼
0 if k 6¼ l;
06 r6 1 if ½ðk ¼ l ¼ 2i� 1Þ _ ðk ¼ l ¼ 2iÞ� ^ node i 2 Xeþ;
ðr � 1Þ if ½ðk ¼ l ¼ 2j� 1Þ _ ðk ¼ l ¼ 2jÞ� ^ node j 2 Xe�:

8<
: ð38Þ
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The enhanced degrees of freedom ~aae are given by
~aae ¼ Me
ww

e: ð39Þ

In (39), Me

w is a ð2n� 2nwÞ matrix:
Me
w ¼

Ne
w1

Ne
w2

. . .
Ne

wn

2
664

3
775; ð40Þ
where Ne
wi are the shape functions obtained at Cd for s ¼ sðxiÞ, xi being the coordinates of node i. As a

result, the displacement field in each element is given by:
ue ¼ Neðâae þH~aaeÞ ¼ Neðâae þHMe
ww

eÞ in Xe;

sut
e ¼ Ne

w½sðxÞ�we at Ce
d:

ð41Þ
The strain field êee is approximated by:
êee ¼ LNeâae ¼ Beðae �HMe
ww

eÞ; ð42Þ

where L is the usual differential operator. The incremental stress field is
dre ¼ De dêee ¼ DeBeðdae �HMe
w dw

eÞ: ð43Þ

The tractions are obtained from the traction-jump law at the discontinuity. In incremental format this

reads:
dte ¼ Te dsut
e ¼ TeNe

w dw
e at Ce

d: ð44Þ

Discretising (25) and (26) by means of the field approximations given in (35)–(44), we obtain:
Ke
aa �Ke

aw

�Ke
wa Ke

ww þ Ke
d

� �
dae

dwe

� �
¼ dfeext

dfew;ext

� �
; ð45Þ
where
Ke
aa ¼

Z
Xe
BeTDeBe dX; ð46Þ

Ke
aw ¼

Z
Xe
BeTDeBe

w dX; ð47Þ

Ke
wa ¼ KeT

aw; ð48Þ

Ke
ww ¼

Z
Xe
BeT

w DeBe
w dX; ð49Þ

Ke
d ¼

Z
Cd

NeT
w TeNe

w dC; ð50Þ

Be
w ¼ BeHMe

w; ð51Þ

and
dfeext ¼
Z
X
NeT dbe dXþ

Z
Ct

NeT d�tte dC; ð52Þ
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dfew;ext ¼ 0; ð53Þ
where the incremental forces dfew;ext, introduced at the discontinuity, are assumed to be zero. From Eqs.

(45)–(50), it is clear that a symmetric formulation is obtained, as long as matrices De and Te are symmetric.
At this stage, two different approaches can be adopted:

i(i) either the additional nodes are considered as internal nodes in the element, or

(ii) the new nodes are global.

In the former approach, which can be considered a natural extension of the usual embedded disconti-

nuity formulation, condensation of the corresponding additional degrees of freedom can be performed at

element level and the bandwidth of the global stiffness matrix is kept fixed during the calculations. In fact,
from the second equation of (45):
dwe ¼ Ke
ww

�
þ Ke

d

��1
Ke

wa da
e� �
; ð54Þ
and substituting dwe into the first equation of (45) we obtain
Ke
aa

h
� Ke

awðKe
ww þ Ke

dÞ
�1
Ke

wa

i
dae ¼ dfeext; ð55Þ
which allows the definition of the condensed incremental stiffness matrix, given by
Ke
con ¼ Ke

aa

h
� Ke

awðKe
ww þ Ke

dÞ
�1
Ke

wa

i
: ð56Þ
Note that no continuity of the jumps across the element boundaries is achieved in this case. However,

similar to the works presented in Alfaiate et al. (1992, 1997), Alfaiate and Pires (1998, 1999, 2001), where

interface elements were used, the following approximation can be considered: at each element boundary

where two internal nodes coincide, the mean values of the corresponding jump components are adopted as
the true jump components and used in the traction-jump law (see Fig. 3).

In approach (ii), which is adopted here, the additional nodes are global and therefore the bandwidth of

the global stiffness matrix increases during the calculations. Nevertheless, for nw P 2 continuity of the jumps

at the discontinuities is automatically enforced across the element boundaries. Moreover, since the jump is

continuously distributed over the entire element Xe, the elements remain conform.

As previously stated in de Borst et al. (2001), this formulation is kinematically similar to a smeared

approach. Nevertheless, it should be stressed that the constitutive relation adopted for the continuum is not
Fig. 3. Approximated continuous jump across an element boundary.
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modified; instead, a discrete relation is enforced separately at Cd (44), whose location and corresponding

displacement jumps are known (see also Alfaiate and Sluys, 2002).
5. Material and numerical models

In this section, the material and numerical models are described. A linear elastic bulk behaviour is

adopted whereas a localized damage model is used for the traction-jump law. An isotropic law is adopted:
t ¼ ð1� dÞTelw; ð57Þ

where 06 d 6 1 is a scalar damage variable and Tel is the elastic constitutive tensor in which non-diagonal

terms are zero and diagonal terms are penalty functions used to prevent overlapping of crack faces under

crack closure. The evolution of damage is given by:
d ¼ dðjÞ ¼ 1� exp

�
� ft
GF

j

	
; ð58Þ
where k is a scalar variable taken equal to the maximum positive normal jump component:
k ¼ maxhwniþ; jP 0; _jjP 0; ð59Þ

ft is the tensile strength and GF is the fracture energy. A loading function is defined as
f ¼ wn � j: ð60Þ

Only mode I opening is considered, i.e. discontinuities open perpendicularly to the direction of the maxi-
mum principal stress rI whenever
rI ¼ ft: ð61Þ

No shear tractions are allowed at the discontinuities during crack evolution.
5.1. Embedded discontinuity technique

Within the scope of the numerical implementation, it is useful to distinguish between: (i) crack propa-

gation and (ii) crack opening:

i(i) a new embedded discontinuity always crosses the entire parent element. Only straight discontinuities

are allowed and the corresponding directions are defined perpendicular to the directions of rI which

is obtained at the central integration point of the parent element.

(ii) The opening criterion (61) should be verified at the crack tip. The crack tip usually lies within the parent

element and the corresponding jump, as well as the jump ahead of the crack tip (within the same ele-
ment), are enforced to be practically zero through the use of the penalty functions in T.

Once a discontinuity is embedded in the parent element, one can rely on the tractions measured at the

interface. For instance, for a linear interface (two nodes), the jumps are linear so that the crack tip, which is

defined at a location where the opening criterion is verified (where the normal traction component equals ft
in the case of mode I fracture), is usually located inside the parent element since the discontinuity already

opened at the node behind the tip and the other node, ahead, is still enforced to be closed by using penalty

functions in T. If more nodes are adopted for the interface, the tip will also be usually located between two
adjacent nodes, thus, inside the element. A new discontinuity is introduced in a next element only when the

crack tip approaches the element boundary. At this point, where a node is defined, a correct account of the



Fig. 4. The stress components at each crack node are taken as the average stress components obtained at the two nearest integration

points.
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stress state must be obtained, in order to properly fulfill the opening criterion (61). Only one embedded

discontinuity is allowed in each element and crack path continuity is achieved according to an algorithm

similar to the one presented in Alfaiate et al. (2001a).

Different criteria have been proposed in literature for obtaining the stresses at the crack tip, which give

rise to a more or less localized crack evolution criterion, depending on the degree of mesh refinement and

on the order of the parent elements. In particular, the following examples are mentioned:

(1) the accurate definition of the stresses near the crack tip is approximated by using special functions taken

from linear elastic fracture mechanics (Ingraffea, 1989; Carpinteri et al., 1989; M€ooes et al., 1999),
(2) the mean values of the stress components obtained at the nearest integration points of the crack tip de-

fine the stress state adopted for crack evolution (Alfaiate et al., 1997; Alfaiate and Pires, 1999), or

(3) a non-local stress state is adopted near the crack tip,in which case the averaging support is extended

beyond the element size (de Borst et al., 2001; Wells, 2001).

Here, similar to the work presented in Alfaiate et al. (1997) and Alfaiate and Pires (1999), the stress

components at each crack node are taken as the average stress components obtained at the two nearest

integration points, located at each side of the common element boundary (see Fig. 4).
6. Numerical examples

The numerical examples presented are: simple one element examples, a three point bending beam and a
single edge notched beam.
6.1. One element examples

The first example is a constant strain triangle, submitted to tension. Due to the asymmetry, the hori-

zontal discontinuity, introduced at the centroid, opens at one of the edges only, as depicted in Fig. 5 where

the deformed meshes obtained from both the embedded discontinuity example and a discrete-interface test

are presented. In Fig. 6, a perfect match between the load–displacement curves obtained with the two

approaches is presented. Note that a homogeneous jump field across the element would be obtained with

the non-symmetric formulation used in Armero and Garikipati (1996), Oliver (1996a,b), Wells and Sluys
(2000, 2001b), Alfaiate et al. (2001a), yielding more dissipation of energy.



Fig. 5. Asymmetric triangle submitted to tension.

Fig. 6. Load–displacement curves corresponding to Fig. 5.
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Next, a symmetric triangle is submitted to tension. Depending on the position of the prescribed dis-
continuity, different maximum loads are obtained, exactly in the same way as in a discrete-interface ap-

proach. In Fig. 7, the load–displacement curves obtained with the embedded model and with the interface

approach are presented, which show almost complete similarity. Note that, if the non-symmetric formu-
Fig. 7. Symmetric triangle submitted to tension.
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lation were adopted (Oliver, 1996b), since it does not depend on the crack length, the same peak load (as

well as load–displacement curve) would be obtained in the three examples.
6.2. Three point bending beam

The three point bending beam test is another example in which the discrete-interface and the embedded

approach were compared. The beam dimensions are: length¼ 2 m, thickness¼ 0.05 m and depth¼ 0.2 m,

with a 0.1 m notch depth. The adopted material parameters are: ft ¼ 3:33 MPa, Young modulus E ¼ 30
GPa and fracture energy GF ¼ 115 N/m. In Fig. 8, the deformed meshes obtained with both approaches are

presented. In Fig. 9, the load–displacement curves numerically obtained are presented and compared to the

experimental result reported in Petersson (1981). First, a prescribed vertical crack path is introduced in

both the embedded and the discrete-interface numerical examples. In this case, the location and orientation
Fig. 8. Three point bending beam: deformed meshes.

Fig. 9. Three point bending beam: load–displacement curves.
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of the discontinuities are given a priori, such that the crack path in enforced along the midspan, both in the

embedded and in the interface analyses. Then, a solution with non-prescribed embedded discontinuities is

also obtained. In the latter example, as a first attempt of a simplified opening criterion, the stress state at the

crack tip is obtained at the centre of the element ahead of the crack tip. As a result, compared to the
prescribed solutions, the crack tip always opens later and a higher peak load than the experimental one is

obtained. The result obtained with the the partition of unity method is also shown, where the same opening

criterion is adopted, thus leading to a solution with delayed crack propagation similar to the non-prescribed

one.
6.3. Single edge notched beam

The last test presented is the single edge notched beam. The beam dimensions and boundary conditions

are shown in Fig. 11. The adopted material parameters are: ft ¼ 2:8 MPa, Young modulus E ¼ 35 GPa and

fracture energy GF ¼ 100 N/m. In Schlangen (1993), Schlangen and van Mier (1993) experimental results

were obtained with this beam, in which the load is controlled such that a monotonic increasing of the

sliding of the notch (crack mouth sliding displacement, CMSD) is enforced. In the numerical analyzes, load
control is performed using an arc length method where only the relative sliding displacement of the notch

(CMSD) is taken into account in the constraint equation.

Four different numerical solutions are presented: in the first three analyses a structured mesh with four

node isoparametric elements is used, whereas in the fourth analysis an unstructured mesh is adopted with

constant strain triangles. In all cases, continuity of the crack path is enforced.
6.3.1. Structured mesh

In Fig. 10 the load–CMSD curves obtained with a structured mesh with quadrilateral elements are

compared to the experimental load–CMSD curve. In test number one (curve 1), a non-prescribed numerical

solution was obtained adopting the simplified opening criterion mentioned for the three-point bending
Fig. 10. Structured mesh: load–CMSD curves.



Fig. 11. Single end notched beam: crack path with structured mesh from test number three.
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beam. It is clear that the solution obtained with this criterion deviates from the experimental result. In test

number two the crack path was prescribed (curve 2). In this case, the information relative to the location

and orientation of the cracks, which had to be known a priori, was taken from the first test. In test number

three (curve 3), a better account of the stresses at the crack tip was adopted by means of the opening

criterion defined in Section 5.1. It is obvious that this criterion gives rise to a load–CMSD curve similar to

the curve obtained with the prescribed crack and that both curves agree well with the experimental one. In
Fig. 11 the crack path obtained from test number three is shown. In Fig. 12(a) the corresponding deformed

mesh is presented; in Fig. 12(b) the same deformed mesh is shown where the elements crossed by the
Fig. 12. Single edge notched beam: deformed mesh obtained from test number three; in (b) the elements crossed by the discontinuity

were artificially removed.
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discontinuity were artificially removed. Both the crack path and the deformed mesh agree well with the

experimental observation reported in Schlangen and van Mier (1993), Schlangen (1993), in spite of the fact

that the adopted mesh is relatively coarse (about 350 elements).

6.3.2. Unstructured mesh

In Fig. 13, the load–CMSD curve obtained with the unstructured mesh (curve 4) is compared to the
experimental curve. In this figure, the result taken from Alfaiate et al. (2001a) is also presented (curve 5).

This result was obtained with the non-symmetric formulation (Armero and Garikipati, 1996; Oliver,

1996a,b; Wells and Sluys, 2000, 2001b) with the enforcement of crack path continuity. It is interesting to see

that the ascending branch is better approximated with the new formulation (curve 4) than with the non-

symmetric approach (curve 5), although the peak load is still larger than the experimentally observed peak

load. However, it should be mentioned that CST elements can not provide a correct definition of the

stresses at crack nodes, unless a much refined mesh is used, which is not the case here. In Fig. 14, the crack

path obtained from test number four is shown.
Finally, it is interesting to note that curves 2–5 in Figs. 10 and 13 show a more brittle softening branch

than the experimental curve. This is due to the fact that mixed mode fracture was neglected, i.e., no shear

tractions were allowed at the discontinuities during crack evolution. In fact, in Alfaiate et al. (2001a,b) it

was shown the response becomes more ductile if more shear tractions are allowed in the discontinuities

during crack opening.
Fig. 13. Unstructured mesh: load–CMSD curves.

Fig. 14. Single edge notched beam: crack path obtained with unstructured mesh.
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7. Conclusions and discussion

In this paper, a new numerical implementation of embedded discontinuities with non-homogeneous

jumps across the elements was introduced. The comparison with other embedded and partition-of-unity
approaches was carried out. The important conclusions of this study are:

(1) in the adopted formulation, the jumps are approximated by additional degrees of freedom obtained at

additional nodes;

(2) these degrees of freedom can be considered either as global or local:

(a) in the former case, which is adopted in the paper, new global degrees of freedom are introduced as

the crack propagates, allowing for continuous jumps across element boundaries, at the cost of an

increasing bandwidth of the stiffness matrix;
(b) in the latter case, which can be considered an extension of previous embedded discontinuity ap-

proaches, the jumps are considered as internal degrees of freedom, which can be condensed out

at element level, thus keeping the stiffness bandwidth constant. However, in this case, continuity

of the displacement jumps across element boundaries can not be enforced;

(3) the variational formulation adopted consists of the principle of virtual work applied to a body crossed

by a discontinuity, as previously presented in Malvern (1969);

(4) it is shown that, essentially, the same variational formulation is adopted in other approaches, such as

the partition of unity method or extended finite elements, and the embedded formulation introduced by
Lotfi and Shing (1995);

(5) it is also shown that, similar to the work of Simo et al. (1993), in which a non-symmetric formulation is

introduced, the traction continuity condition is also imposed in a weak form, which yields, although in

a different way, a symmetric formulation;

(6) the adopted formulation is found similar to a formulation with interface elements, although the jumps

are projected (smeared) to the element nodes using the regular shape functions, as done in other embed-

ded approaches and in the partition of unity and XFEMs;

(7) in the partition of unity and XFEMs, the approximation of the enhanced displacement field is intro-
duced directly at the existing element nodes; in the present approach, the enhanced degrees of freedom

at the nodes are derived from the jumps measured at the discontinuity surface Cd, which is embedded in

the parent element;

(8) the formulation adopted depends not only on the derivatives of the enhanced degrees of freedom (sym-

metric and non-symmetric formulations with constant jumps), but also on the relative displacements,

comparable to the partition of unity method;

(9) promising results were obtained with relatively coarse structured and non-structured meshes which com-

pare well with experimental results and with the results obtained from analyses with interface elements.
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